A water filled tube: what are its energetics?

\longrightarrow mgh potential \longrightarrow
\longleftrightarrow ן!!uә!od $\mathrm{d} *{ }^{\text {M }} \wedge \longrightarrow$
Working now with potentials in terms Ψ (units of pressure: Nm^{-2}) instead of the units of μ (Jmol^{-1});
$\Psi=\mu / V_{w}$
units: $\mathrm{Nm}^{-2}=$
$\mathrm{Jmol}^{-1} / \mathrm{m}^{3} \mathrm{~mol}^{-1}=\mathrm{Nm}^{-2}$
how do the Ψ components due to height and hydrostatic pressure change change with height?

The height component (derived from mgh):

$$
\Psi_{\text {height }}=\rho_{w} g h
$$

The hydrostatic component:
$\Psi_{\text {hydrostatic }}=\rho_{\mathrm{w}} g(1-\mathrm{h})$ (ie distance from top)
total potential at any point h is:
$\Psi_{\text {total }}=\Psi_{\text {height }}+\Psi_{\text {hydrostatic }}$
$=\rho_{w} g h+\rho_{w} g(1-h)=\rho_{w} g$
so potential is the same throughout the column
and there is no movement of water.

