

Abstract

Last Update : Fri Oct 10 00:59:58 CEST 2003

This book is a collection of documents that might be useful for people de-
veloping samba or those interested in doing so. It’s nothing more than a
collection of documents written by samba developers about the internals of
various parts of samba and the SMB protocol. It’s still (and will always
be) incomplete. The most recent version of this document can be found at
<http://devel.samba.org/>.

http://devel.samba.org/
http://www.fsf.org/licenses/gpl.txt
http://www.fsf.org/licenses/gpl.txt

mailto:lkcl@switchboard.net
mailto:paul@argo.demon.co.uk
mailto:duncans@sco.com
mailto:David.Chappell@mail.trincoll.edu
mailto:jelmer@samba.org
mailto:jelmer@samba.org

Attribution iii

mailto:aliguor@us.ibm.com
mailto:jelmer@samba.org
mailto:ab@samba.org
mailto:metze@samba.org
mailto:samba@samba.org

CONTENTS

Contents

ATTRIBUTION ii

Part I The protocol 1

Chapter 1 NETBIOS IN A UNIX WORLD 3
1.1 Introduction 3
1.2 Usernames 3
1.3 File Ownership 4
1.4 Passwords 4
1.5 Locking 5
1.6 Deny Modes 6
1.7 Trapdoor UIDs 6
1.8 Port numbers 6
1.9 Protocol Complexity 7

Chapter 2 NT DOMAIN RPC’S 9
2.1 Introduction 9

2.1.1 Sources 11
2.1.2 Credits 11

2.2 Notes and Structures 11
2.2.1 Notes 11
2.2.2 Enumerations

vi

http://mailhost.cb1.com/~lkcl/cifsntdomain.txt
http://ntbugtraq.rc.on.ca/SCRIPTS/WA.EXE?A2=ind9708;L=ntbugtraq;O=A;P=2935
http://ntbugtraq.rc.on.ca/SCRIPTS/WA.EXE?A2=ind9708;L=ntbugtraq;O=A;P=2935

http://mailhost.cb1.com/~lkcl/crypt.html
http://samba.org/cgi-bin/mfs/01/digest/1997/97aug/0391.html
http://mailhost.cb1.com/~lkcl/crypt.txt
mailto:linus@incolumitas.se

12 NT Domain RPC’s Chapter 2

5.

Section 2.2. Notes and Structures 15

UINT16[]

Section 2.2. Notes and Structures 19

UINT64 logon ID

UNIHDR user name unicode header

UNIHDR workgroup name unicode header

char[16] arc4 LM OWF Password

char[16] arc4 NT OWF Password

UNISTR2 domain name unicode string

UNISTR2 user name unicode string

UNISTR2 workstation name unicode string

2.2.3.22 SAM INFO (sam logon/logo� id info structure)

20

24 NT Domain RPC’s Chapter 2

DOM SID[num sids] other domain SIDs?

2.2.3.27 SH INFO 1

Section 2.3. MSRPC over Transact Named Pipe 31

UINT16 maxtsize maximum transmission fragment size (0x1630)

UINT16 maxrsize max receive fragment size (0x1630)

UINT32 assocgid associated group id (0x0)

UINT32 numelements the number of elements (0x1)

UINT16 contextid presentation context identi�er (0x0)

UINT8 numsyntaxes

Section 2.3. MSRPC over Transact Named Pipe 33

2.3.2.8 RPC ResNorm RW

UINT32 allochint # size of the stub data in bytes

UINT16 prescontext # presentation context identi�er (same as request)

UINT8 cancelcount

Section 2.3. MSRPC over Transact Named Pipe 35

Establish a connection to the IPC$ share (SMBtconX). use encrypted passwords.
Open an RPC Pipe with the name "nnPIPEnnlsarpc". Store the �le handle.
Using the �le handle, send a Set Named Pipe Handle state to 0x4300.
Send an LSA Open Policy request. Store the Policy Handle.
Using the Policy Handle, send LSA Query Info Policy requests, etc.
Using the Policy Handle, send an LSA Close.
Close the IPC$ share.

De�nes for this pipe, identifying the query are:

LSA Open Policy: 0x2c

LSA Query Info Policy: 0x07

36 NT Domain RPC’s Chapter 2

OBJ ATTR object attributes

UINT32 1 - desired access

2.3.6.2 Response

POL HND LSA policy handle

return 0 - indicates success

2.3.7 LSA Query Info Policy

Note: The info class in response must be the same as that in the request.

2.3.7.1 Request

POL HND LSA policy handle

UINT16 info class (also a policy handle?)

2.3.7.2 Response

VOID* undocumented bu�er pointer

UINT16 info class (same as info class in request).

Section 2.3. MSRPC over Transact Named Pipe 39

VOID*[num entries] undocumented domain SID pointers to be looked up.
DOM SID[num entries] domain SIDs to be looked up.

char[16] completely undocumented 16 bytes.

2.3.11.2 Response

DOM REF domain reference response

UINT32 num entries (listed above)

VOID* undocumented bu�er pointer

UINT32 num entries (listed above)

DOM SID2[num entries] domain SIDs (from Request, listed above).

UINT32 num

UINT32

40 NT Domain RPC’s Chapter 2

VOID* undocumented domain SID bu�er pointer

VOID* undocumented domain name bu�er pointer

NAME[num entries] names to be looked up.

char[] undocumented bytes - falsely translated SID structure?

2.3.12.2 Response

DOM REF domain reference response

42 NT Domain RPC’s Chapter 2

2.4.1.1 Request

VOID* undocumented bu�er pointer

UNISTR2 logon server unicode string

UNISTR2 logon client unicode string

char[8] client challenge

2.4.1.2 Response

char[8] server challenge

return 0 - indicates success

2.4.2 LSA Authenticate 2

Note: in between request and response, calculate the client credentials, and
check them against the client-calculated credentials (this process uses the
previously received client credentials).

Note: neg ags in the response is the same as that in the request.

Note: you must take a copy of the client-calculated credentials received here,
because they will be used in subsequent authentication packets.

2.4.2.1 Request

LOG INFO client identi�cation info

char[8] client-calculated credentials

UINT8[] padding to 4-byte align with start of SMB header.

44 NT Domain RPC’s Chapter 2

Section 2.5. nnMAILSLOTnNETnNTLOGON 47

UINT16 LM20token (same as received in request)

2.5.2 SAM Logon

Note: machine name in response is preceded by two ’n’ characters.

Note: NTversion, LMNTtoken, LM20token in response are the same as
those given in the request.

Note: user name in the response is presumably the same as that in the
request.

2.5.2.1 Request

UINT16 0x0012 - SAM Logon

UINT16 request count

UNISTR machine name

UNISTR user name

STR response mailslot

UINT32 alloweable account

UINT32 domain SID size

char[sid size] domain SID, of sid size bytes.

UINT8[] ???? padding to 4?

UINT32 NTwersio2

52 NT Domain RPC’s Chapter 2

C->S Authenticate,Rc
S: Rs = Cred(Ks,Cs), assert(Rc == Cred(Ks,Cc))
S->C Rs
C: assert(Rs == Cred(Ks,Cs))

On joining the domain the client will optionally attempt to change its pass-

Section

Part II

Samba Basics

Chapter 4

THE SAMBA DEBUG
SYSTEM

4.1 New Output Syntax

The syntax of a debugging log �le is represented as:

>debugfile< :== { >debugmsg< }

>debugmsg< :== >debughdr< ’\n’ >debugtext<

>debughdr< :== ’[’ TIME ’,’ LEVEL ’]’ FILE ’:’ [FUNCTION] ’(’ LINE ’)’

>debugtext< :== { >debugline< }

>debugline< :== TEXT ’\n’

TEXT is a string of characters excluding the newline character.

LEVEL is the DEBUG level of the message (an integer in the range 0..10).

TIME is a timestampharacter.

62 The samba DEBUG system Chapter 4

to send the output to stdout, then you would write

DEBUG(0, ("This is a %s message.\n", "debug"));

to send the output to the debug �le. All of the normal printf() formatting
escapes work.

Note that in the above example the DEBUG message level is set to 0. Mes-

Section 4.3. The DEBUGADD() Macro 63

The test returned
[1998/07/30 16:00:51, 0] file.c:function(258)

True
[1998/07/30 16:00:51, 0] file.c:function(261)

.

Which isn’t much use. The format bu�er kludge �xes this problem.

4.3 The DEBUGADD() Macro

In addition to the kludgey solution to the broken line problem described

Section 4.5. New Functions 65

the vslprintf() function, and then passed to format debug text(). If you
use DEBUGLVL() you will probably print the body of the message using
dbgtext().

4.5.2 dbghdr()

Section 5.2. The new functions 67

(c)

70 Samba Internals Chapter 5

5.3.14 RSSVAL(buf,pos,val)

sets the value of the unsigned short (16 bit) big-endian integer at o�set pos
within bu�er buf to value val. refered to as "USHORT".

5.3.15 RSIVAL(buf,pos,val)

sets the value of the unsigned 32 bit big-endian integer at o�set pos within
bu�er buf to value val.

5.4 LAN Manager Samba API

Section 5.4. LAN Manager Samba API 71

7. rparam: a pointer to a pointer which will be set to point to the returned

Section 5.5. Code character table 73

Chapter 6

CODING SUGGESTIONS

So you want to add code to Samba ...

One of the daunting tasks facing a programmer attempting to write code for
Samba is understanding the various coding conventions used by those most
active in the project. These conventions were mostly unwritten and helped

http://lxr.linux.no/source/Documentation/CodingStyle
http://www.fsf.org/prep/standards_toc.html

75

There are lots of platforms that Samba builds on so use caution when adding
a call to a library function that is not invoked in existing Samba code. Also
note that there are many quite di�erent SMB/CIFS clients that Samba tries
to support, not all of which follow the SNIA CIFS Technical Reference (or
the earlier Microsoft reference documents or the X/Open book on the SMB
Standard) perfectly.

Here are some other suggestions:

1. use d

77

The suggestions above are simply that, suggestions, but the information
may help in reducing the routine rework done on new code. The preceeding
list is expected to change routinely as new support routines and macros are
added.

Chapter 7

CONTRIBUTING CODE

Here are a few tips and notes that might be useful if you are interested in
modifying samba source code and getting it into samba’s main branch.

Retrieving the source In order to contribute code to samba, make sure

https://bugzilla.samba.org/
mailto:samba-technical@samba.org

Part III

86 RPC Pluggable Modules Chapter 9

clnt the Client name of the named pipe

srv the Server name of the named pipe

cmds a list of api

88 VFS Modules Chapter 10

10.1.1 The general interface

A VFS module has three major components:

� An initialization function that is called during the module load to
register implemented operations.

� An operations table

Section 10.1. The Samba (Posix) VFS layer 91

struct vfs_handles_pointers {
...

/* File operations */

struct vfs_handle_struct *open;
struct vfs_handle_struct *close;
struct vfs_handle_struct *read;
struct vfs_handle_struct *write;
struct vfs_handle_struct *lseek;
struct vfs_handle_struct *sendfile;

...
} handles;

};

This macros SHOULD be used to call any vfs operation. DO NOT ACCESS
conn->vfs.ops.* directly !!!

...

/* File operations */
#define SMB_VFS_OPEN(conn, fname, flags, mode) \

((conn)->vfs.ops.open((conn)->vfs.handles.open,\
(conn), (fname), (flags), (mode)))

#define SMB_VFS_CLOSE(fsp, fd) \
((fsp)->conn->vfs.ops.close(\
(fsp)->conn->vfs.handles.close, (fsp), (fd)))

#define SMB_VFS_READ(fsp, fd, data, n) \
((fsp)->conn->vfs.ops.read(\
(fsp)->conn->vfs.handles.read,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_WRITE(fsp, fd, data, n) \
((fsp)->conn->vfs.ops.write(\
(fsp)->conn->vfs.handles.write,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_LSEEK(fsp, fd, offset, whence) \
((fsp)->conn->vfs.ops.lseek(\

Section 10.2. The Interaction between the Samba VFS subsystem and the modules 93

} vfs_op_layer;

10.2 The Interaction between the Samba VFS subsystem
and the modules

10.2.1 Initialization and registration

As each Samba module a VFS module should have a

NTSTATUS vfs_example_init(void);

function if it’s staticly linked to samba or

NTSTATUS init_module(void);

function if it’s a shared module.

This should be the only non static function inside the module. Global vari-
ables should also be static!

The module should register its functions via the

NTSTATUS smb_register_vfs(int version, const char *name, vfs_op_tuple *vfs_op_tuples);

function.

version should be �lled with SMB VFS INTERFACE VERSION

name this is the name witch can be listed in the vfs objects parameter to
use this module.

vfs op tuples this is an array of vfs op tuple’s. (vfs op tuples is descripted
in details below.)

For each operation the module wants to provide it has a entry in the
vfs op tuple array.

typedef struct _vfs_op_tuple {

Section 10.2. The Interaction between the Samba VFS subsystem and the modules 95

const char *param;

100 VFS Modules Chapter 10

104 VFS Modules Chapter 10

/* get the pointer to our private data
* return -1 if something failed
*/

SMB_VFS_HANDLE_GET_DATA(handle, data, struct example_privates, return -1);

/* do something here...*/
DEBUG(0,("some_string: %s\n",data->some_string));

return SMB_VFS_NEXT_CLOSE(handle, fsp, fd);
}

11.

Section 10.4. Some Notes 105

}

Overload only the functions you really need to!

10.4.2 Implement OPAQUE functions

If you want to just implement a better version of a default samba opaque
function (e.g. like a disk free() function for a special �lesystem) it’s ok to
just overload that speci�c function.

If you want to implement a database �lesystem or something di�erent from
a posix �lesystem. Make sure that you overload every vfs operation!!!

Functions your FS does not support should be overloaded by something like
this: e.g. for a readonly �lesystem.

static int example_rename(vfs_handle_struct *handle, connection_struct *conn,
char *oldname, char *newname)

{

Chapter 11

THE SMB.CONF FILE

11.1 Lexical Analysis

Basically, the �le is processed on a line by line basis. There are four types
of lines that are recognized by the lexical analyzer (params.c):

1. Blank lines - Lines containing only whitespace.

2. Comment lines - Lines beginning with either a semi-colon or a pound
sign (’;’ or ’#’).

3. Section header lines - Lines beginning with an open square bracket
(’[’).

4. Parameter lines - Lines beginning with any other character. (The
default line type.)

The �rst two are handled exclusively by the lexical analyzer, which ignores
them. The latter two line types are scanned for

1. - Section names

2. - Parameter names

3. - Parameter values

These are the only tokens passed to the parameter loader (loadparm.c).
Parameter names and values are divided from one another by an equal sign:
’=’.

106

Section 11.2. Syntax 109

11.2 Syntax

The syntax of the smb.conf �le is as follows:

<file> :== { <section> } EOF
<section> :== <section header> { <parameter line> }
<section header> :== ’[’ NAME ’]’
<parameter line> :== NAME ’=’ VALUE NL

Basically, this means that

1. a �le is made up of zero or more sections, and is terminated by an
EOF (we knew that).

2. A section is made up of a section header followed by zero or more
parameter lines.

3. A section header is identi�ed by an opening bracket and terminated
by the closing bracket. The enclosed NAME identi�es the section.

4. A parameter line is divided into a NAME and a VALUE. The *�rst*
equal sign on the line separates the NAME from the VALUE. The
VALUE is terminated by a newline character (NL = ’nn’).

Chapter 12

Section 12.1. WINS Failover 111

a technical requirement.

[global]
wins server = 192.168.1.2:eth0 192.168.1.3:eth0 192.168.2.2:eth1

Using this con�guration, nmbd would attempt to register the server’s Net-
BIOS name with one WINS server in each group. Because the "eth0" group
has two servers, the second server would only be used when a registration
(or resolution) request to the �rst server in that group timed out.

NetBIOS name resolution follows.

PartIVDebuggingandtracing

Chapter 14

TRACING SAMBA SYSTEM
CALLS

This �le describes how to do a system call trace on Samba to work out what
its doing wrong. This is not for the faint of heart, but if you are reading
this then you are probably desperate.

Actually its not as bad as the the above makes it sound, just don’t expect

119

[pid 28268] open("/dev/null", O_WRONLY) = -1 EACCES (Permission denied)

The process is trying to �rst open /dev/null read-write then read-only.
Both fail. This means /dev/null has incorrect permissions.

124 Samba Printing Internals Chapter 15

� ReplyOpenPrinter

� ReplyClosePrinter

� RouteRefreshPrinterChangeNotify (RRPCN)

One additional RPC is available to a server, but is never used by the Win-
dows spooler service:

� RouteReplyPrinter()

The opnum for all of these RPC’s are de�ned in include/rpc spoolss.h

Windows NT print servers use a bizarre method of sending print noti�cation
event to clients. The process of registering a new change noti�cation handle
is as follows. The ’C’ is for client and the ’S’ is for server. All error conditions
have been eliminated.

C: Obtain handle to printer or to the printer
server via the standard OpenPrinterEx() call.

S: Respond with a valid handle to object

C: Send a RFFPCN request with the previously obtained
handle with either (a) set of flags for change events
to monitor, or (b) a PRINTER_NOTIFY_OPTIONS structure
containing the event information to monitor. The windows
spooler has only been observed to use (b).

S: The <* another missing word*> opens a new TCP session to the client (thus requiring
all print clients to be CIFS servers as well) and sends
a ReplyOpenPrinter() request to the client.

C: The client responds with a printer handle that can be used to
send event notification messages.

S: The server replies success to the RFFPCN request.

C: The windows spooler follows the RFFPCN with a RFNPCN
request to fetch the current values of all monitored

Section 15.5. Windows NT/2K Printer Change Notify 125

request back to the client first. However a request of this
nature from the client is often an indication that the previous
notification event was not marshalled correctly by the server
or a piece of data was wrong.

S: The server closes the internal change notification handle

	Attribution
	Contents
	Part I The protocol
	Chapter 1 NetBIOS in a Unix World
	1.1 Introduction
	1.2 Usernames
	1.3 File Ownership
	1.4 Passwords
	1.5 Locking
	1.6 Deny Modes
	1.7 Trapdoor UIDs
	1.8 Port numbers
	1.9 Protocol Complexity

	Chapter 2 NT Domain RPC's
	2.1 Introduction
	2.1.1 Sources
	2.1.2 Credits

	2.2 Notes and Structures
	2.2.1 Notes
	2.2.2 Enumerations
	2.2.2.1 MSRPC Header type
	2.2.2.2 MSRPC Packet info

	2.2.3 Structures
	2.2.3.1 VOID *
	2.2.3.2 char
	2.2.3.3 UTIME
	2.2.3.4 NTTIME
	2.2.3.5 DOM_SID (domain SID structure)
	2.2.3.6 STR (string)
	2.2.3.7 UNIHDR (unicode string header)
	2.2.3.8 UNIHDR2 (unicode string header plus buffer pointer)
	2.2.3.9 UNISTR (unicode string)
	2.2.3.10 NAME (length-indicated unicode string)
	2.2.3.11 UNISTR2 (aligned unicode string)
	2.2.3.12 OBJ_ATTR (object attributes)
	2.2.3.13 POL_HND (LSA policy handle)
	2.2.3.14 DOM_SID2 (domain SID structure, SIDS stored in unicode)
	2.2.3.15 DOM_RID (domain RID structure)
	2.2.3.16 LOG_INFO (server, account, client structure)
	2.2.3.17 CLNT_SRV (server, client names structure)
	2.2.3.18 CREDS (credentials + time stamp)
	2.2.3.19 CLNT_INFO2 (server, client structure, client credentials)
	2.2.3.20 CLNT_INFO (server, account, client structure, client credentials)
	2.2.3.21 ID_INFO_1 (id info structure, auth level 1)
	2.2.3.22 SAM_INFO (sam logon/logoff id info structure)
	2.2.3.23 GID (group id info)
	2.2.3.24 DOM_REF (domain reference info)
	2.2.3.25 DOM_INFO (domain info, levels 3 and 5 are the same))
	2.2.3.26 USER_INFO (user logon info)
	2.2.3.27 SH_INFO_1_PTR (pointers to level 1 share info strings)
	2.2.3.28 SH_INFO_1_STR (level 1 share info strings)
	2.2.3.29 SHARE_INFO_1_CTR
	2.2.3.30 SERVER_INFO_101

	2.3 MSRPC over Transact Named Pipe
	2.3.1 MSRPC Pipes
	2.3.2 Header
	2.3.2.1 RPC_Packet for request, response, bind and bind acknowledgement
	2.3.2.2 Interface identification
	2.3.2.3 RPC_Iface RW
	2.3.2.4 RPC_ReqBind RW
	2.3.2.5 RPC_Address RW
	2.3.2.6 RPC_ResBind RW
	2.3.2.7 RPC_ReqNorm RW
	2.3.2.8 RPC_ResNorm RW

	2.3.3 Tail
	2.3.4 RPC Bind / Bind Ack
	2.3.5 NTLSA Transact Named Pipe
	2.3.6 LSA Open Policy
	2.3.6.1 Request
	2.3.6.2 Response

	2.3.7 LSA Query Info Policy
	2.3.7.1 Request
	2.3.7.2 Response

	2.3.8 LSA Enumerate Trusted Domains
	2.3.8.1 Request
	2.3.8.2 Response

	2.3.9 LSA Open Secret
	2.3.9.1 Request
	2.3.9.2 Response

	2.3.10 LSA Close
	2.3.10.1 Request
	2.3.10.2 Response

	2.3.11 LSA Lookup SIDS
	2.3.11.1 Request
	2.3.11.2 Response

	2.3.12 LSA Lookup Names
	2.3.12.1 Request
	2.3.12.2 Response

	2.4 NETLOGON rpc Transact Named Pipe
	2.4.1 LSA Request Challenge
	2.4.1.1 Request
	2.4.1.2 Response

	2.4.2 LSA Authenticate 2
	2.4.2.1 Request
	2.4.2.2 Response

	2.4.3 LSA Server Password Set
	2.4.3.1 Request
	2.4.3.2 Response

	2.4.4 LSA SAM Logon
	2.4.4.1 Request
	2.4.4.2 Response

	2.4.5 LSA SAM Logoff
	2.4.5.1 Request
	2.4.5.2 Response

	2.5 \\MAILSLOT\NET\NTLOGON
	2.5.1 Query for PDC
	2.5.1.1 Request
	2.5.1.2 Response

	2.5.2 SAM Logon
	2.5.2.1 Request
	2.5.2.2 Response

	2.6 SRVSVC Transact Named Pipe
	2.6.1 Net Share Enum
	2.6.1.1 Request
	2.6.1.2 Response

	2.6.2 Net Server Get Info
	2.6.2.1 Request
	2.6.2.2 Response

	2.7 Cryptographic side of NT Domain Authentication
	2.7.1 Definitions
	2.7.2 Protocol
	2.7.3 Comments

	2.8 SIDs and RIDs
	2.8.1 Well-known SIDs
	2.8.1.1 Universal well-known SIDs
	2.8.1.2 NT well-known SIDs

	2.8.2 Well-known RIDS
	2.8.2.1 Well-known RID users
	2.8.2.2 Well-known RID groups
	2.8.2.3 Well-known RID aliases

	Part II Samba Basics
	Chapter 3 Samba Architecture
	3.1 Introduction
	3.2 Multithreading and Samba
	3.3 Threading smbd
	3.4 Threading nmbd
	3.5 nbmd Design

	Chapter 4 The samba DEBUG system
	4.1 New Output Syntax
	4.2 The DEBUG() Macro
	4.3 The DEBUGADD() Macro
	4.4 The DEBUGLVL() Macro
	4.5 New Functions
	4.5.1 dbgtext()
	4.5.2 dbghdr()
	4.5.3 format_debug_text()

	Chapter 5 Samba Internals
	5.1 Character Handling
	5.2 The new functions
	5.3 Macros in byteorder.h
	5.3.1 CVAL(buf,pos)
	5.3.2 PVAL(buf,pos)
	5.3.3 SCVAL(buf,pos,val)
	5.3.4 SVAL(buf,pos)
	5.3.5 IVAL(buf,pos)
	5.3.6 SVALS(buf,pos)
	5.3.7 IVALS(buf,pos)
	5.3.8 SSVAL(buf,pos,val)
	5.3.9 SIVAL(buf,pos,val)
	5.3.10 SSVALS(buf,pos,val)
	5.3.11 SIVALS(buf,pos,val)
	5.3.12 RSVAL(buf,pos)
	5.3.13 RIVAL(buf,pos)
	5.3.14 RSSVAL(buf,pos,val)
	5.3.15 RSIVAL(buf,pos,val)

	5.4 LAN Manager Samba API
	5.4.1 Parameters
	5.4.2 Return value

	5.5 Code character table

	Chapter 6 Coding Suggestions
	Chapter 7 Contributing code
	Chapter 8 Modules
	8.1 Advantages
	8.2 Loading modules
	8.2.1 Static modules
	8.2.2 Shared modules

	8.3 Writing modules
	8.3.1 Static/Shared selection in configure.in

	Part III Samba Subsystems
	Chapter 9 RPC Pluggable Modules
	9.1 About
	9.2 General Overview

	Chapter 10 VFS Modules
	10.1 The Samba (Posix) VFS layer
	10.1.1 The general interface
	10.1.2 Possible VFS operation layers

	10.2 The Interaction between the Samba VFS subsystem and the modules
	10.2.1 Initialization and registration
	10.2.2 How the Modules handle per connection data

	10.3 Upgrading to the New VFS Interface
	10.3.1 Upgrading from 2.2.* and 3.0aplha modules

	10.4 Some Notes
	10.4.1 Implement TRANSPARENT functions
	10.4.2 Implement OPAQUE functions

	Chapter 11 The smb.conf file
	11.1 Lexical Analysis
	11.1.1 Handling of Whitespace
	11.1.2 Handling of Line Continuation
	11.1.3 Line Continuation Quirks

	11.2 Syntax
	11.2.1 About params.c

	Chapter 12 Samba WINS Internals
	12.1 WINS Failover

	Chapter 13 LanMan and NT Password Encryption
	13.1 Introduction
	13.2 How does it work?
	13.3 The smbpasswd file

	Part IV Debugging and tracing
	Chapter 14 Tracing samba system calls
	Chapter 15 Samba Printing Internals
	15.1 Abstract
	15.2 Printing Interface to Various Back ends
	15.3 Print Queue TDB's
	15.4 ChangeID and Client Caching of Printer Information
	15.5 Windows NT/2K Printer Change Notify

	Part V Appendices
	Chapter 16 Notes to packagers
	16.1 Versioning
	16.2 Modules

